Experimenting from a Distance

In case of optical Fourier-Transformation

H. J. Jodl and S. Gröber Physics Department University of Technology Kaiserslautern Germany

StepsTwo 2 – 5 September 2010 Paris

Idea

Diaphragm function a(x,y) describing the diffracting objekt

 $I(X,Y) \sim |E(X,Y)|^2$ E(X,Y) = FT[a(x,y)]

Intensity distribution in Point P on screen is square of Fourier transformed of diaphragm described by a suited function.

 \Rightarrow Use an optical setup to teach/model FT experimentally

FT and basic laws of FT

Property	f(x,y) =	F(u,v) = FT[f(x,y)]	
Scaling	g(ax,by) 1/ ab ·G(u/a,v/b)		
Linearity	a·g(x,y) + b·h(x,y)	/) a·G(u,v) + b·H(u,v)	
Translation	g(x-x ₀ ,y-y ₀)	e ^{ix} ^u · e ^{iy} ^v ·G(u,v)	
Convolution	g(x,y) * h(x,y)	G(u,v) · H(u,v)	
Inversion of convolution	$g(x,y) \cdot h(x,y)$) G(u,v) * H(u,v)	
Separation	eparation g(x) · h(y) G(u) · H(v)		
Inversion of translation	e ^{iu} ^x ·e ^{iv} ^y ·g(x,y)	G(u-u ₀ ,v-v ₀)	

 \Rightarrow Aim to visualize mathematical relations

Diffracting objects

Single forms (8 objects)

Single forms at corners of forms (48 objects)

Quadratic grating with circles as single form confined by different single forms (16 objects)

Quadratic N x M – grating with circles as single form (33 objects)

Some examples

 \Rightarrow Check, if theoretically expected and experimentally determined intensity pattern will agree.

RCL-experiment

Experimental setup of RCL "Optical Fourier-Transformation"

Properties

- Interactive
- authentic
- autonomous
- robust
- accessible 24 h/7d
- no additional software
- no registration
- no costs to use

Demonstration of RCL-experiment

Comparison Experiment - Theory

Visualize basic laws of FT - Scaling

a in µm	Distance d´ between third minima in px	Distance d´ between third minima in cm	ad in 10 ⁻⁶
30	81	4.10	1.22
40	62	3.12	1.25
50	48	2.41	1.21
60	41	2.06	1.24

Proof basic laws of FT – Linearity and Translation

Diffracting object circles distance c

 $c = 30 \ \mu m$

 $c\,=\,60\,\,\mu m$

Diffraction pattern for variable distance c

$$a(x,y) = a_s(x - \frac{c}{2}, y) + a_s(x + \frac{c}{2}, y)$$

 $\underline{E}(k_x,k_y) = FT[a(x,y)] \stackrel{\text{Linearity}}{=} FT[a_s(x-\frac{c}{2},y)] + FT[a_s(x+\frac{c}{2},y)]$ $\stackrel{\text{Translation}}{=} e^{-i\frac{c}{2}k_x} \cdot \underline{E}_s(k_x,k_y) + e^{i\frac{c}{2}k_x} \cdot \underline{E}_s(k_x,k_y) = 2 \cdot \underline{E}_s(k_x,k_y) \cdot \cos(\frac{c}{2}k_x)$

$$\mathbf{I}(\mathbf{k}_{x},\mathbf{k}_{y}) \sim \left|\underline{\mathbf{E}}(\mathbf{k}_{x},\mathbf{k}_{y})\right|^{2} = 4 \cdot \left|\underline{\mathbf{E}}_{s}(\mathbf{k}_{x},\mathbf{k}_{y})\right|^{2} \cdot \cos^{2}(\frac{\mathbf{C}}{2}\mathbf{k}_{x}) = 4 \cdot \mathbf{I}_{s}(\mathbf{k}_{x},\mathbf{k}_{y}) \cdot \cos^{2}(\frac{\mathbf{C}}{2}\mathbf{k}_{x})$$

 $d_{theo} = \frac{\lambda s}{c} = 4.4 \text{ mm}$

$$d_{exp} = 4.3 \text{ mm}$$

Intensity distribution of single form "circle"

Modulation in xdirection

Visualize basic laws of FT – Symmetry

Structure of diffraction pattern

11

Diffraction pattern of boundary rhombus

Conclusion

- This RCL works well qualitatively/quantitatively
- Experimental results agree with theoretical predictions
- Diffracting objects (≈ 100) made by electron beam lithography
- Visualize mathematical relations of FT
- Further studies
- symmetry considerations of diffracting object and diffraction pattern
- from single forms to complex structures
- transition from ordered to disordered forms

Diffraction pattern of what?

 $\begin{array}{l} a \,=\, 15 \; \mu m \\ D \,=\, 240 \; \mu m \\ N \,=\, 16 \end{array}$